Homework #8, PHY 674, 8 November 1995 ## Problem X37: Find the character of the electric dipole operator \vec{r} for the following symmetry groups: O, O_h , T_d , D_{2h} , D_{4h} . Are these characters irreducible? If not, break them up into irreducible components. #### Solution: | Group | O | O_h | T_d | D_{2h} | D_{4h} | |-----------|---------------|---------------|---------------|--------------------------------------|---------------------| | \vec{r} | Γ_{15} | Γ_{15} | Γ_{15} | $B_{1u} \oplus B_{2u} \oplus B_{3u}$ | $A_{2u} \oplus E_u$ | ## Problem X38: Do the same for the magnetic dipole operator proportional to $\vec{L} = \vec{r} \times \vec{p}$. #### Solution: | Group | 0 | O_h | T_d | D_{2h} | D_{4h} | |-----------|---------------|----------------|---------------|------------------------------------|---------------------| | \vec{L} | Γ_{15} | Γ'_{15} | Γ_{25} | $B_{1g}\oplus B_{2g}\oplus B_{3g}$ | $A_{2g} \oplus E_g$ | ## Problem X39: For the groups T_d and D_{2h} , find all allowed electric and magnetic dipole transitions. Which of the phonons (at $\vec{k} = 0$) of YBa₂Cu₃O₆ and YBa₂Cu₃O₇ are infrared active? #### Solution: For electric dipole transitions (belonging to the irreducible representation Γ_{15} in T_d), we have to find the characters $\Gamma_i \otimes \Gamma_{15}$ and decompose them. For magnetic dipole transitions, we need to find $\Gamma_i \otimes \Gamma_{25}$. As an example illustrating how to read the table: Electric dipole transitions from a Γ_1 state are allowed to a Γ_{15} state and forbidden to all other states. From a Γ_2 state, only transitions to Γ_{25} are allowed. From a Γ_{15} state, only transitions to Γ_2 are forbidden, all others allowed. | $\Gamma_i(T_d)$ | Γ_1 | Γ_2 | Γ_{12} | Γ_{15} | Γ_{25} | |--------------------------------|---------------|---------------|----------------------------------|---|---| | $\Gamma_i \otimes \Gamma_{15}$ | Γ_{15} | Γ_{25} | $\Gamma_{15} \oplus \Gamma_{25}$ | $\Gamma_1 \oplus \Gamma_{12} \oplus \Gamma_{15} \oplus \Gamma_{25}$ | $\Gamma_2 \oplus \Gamma_{12} \oplus \Gamma_{15} \oplus \Gamma_{25}$ | | $\Gamma_i \otimes \Gamma_{25}$ | Γ_{25} | Γ_{15} | $\Gamma_{15} \oplus \Gamma_{25}$ | $\Gamma_2 \oplus \Gamma_{12} \oplus \Gamma_{15} \oplus \Gamma_{25}$ | $\Gamma_1 \oplus \Gamma_{12} \oplus \Gamma_{15} \oplus \Gamma_{25}$ | For D_{2h} (for example the crystal YBa₂Cu₃O₇), the electric dipole operator breaks up into the representations $B_{1u} \oplus B_{2u} \oplus B_{3u}$. The magnetic dipole operator breaks up into $B_{1g} \oplus B_{2g} \oplus B_{3g}$. The infrared-active phonons are B_{1u} , B_{2u} , and B_{3u} . | $\Gamma_i(D_{2h})$ | A_g | B_{1g} | B_{2g} | B_{3g} | A_u | B_{1u} | B_{2u} | B_{3u} | |-------------------------|----------|----------|----------|----------|----------|----------|----------|----------| | $B_{1u}\otimes\Gamma_i$ | B_{1u} | A_u | B_{3u} | B_{2u} | B_{1g} | A_g | B_{3g} | B_{2g} | | $B_{1g}\otimes\Gamma_i$ | | | | | | | | | | $B_{2u}\otimes\Gamma_i$ | B_{2u} | B_{3u} | A_u | B_{1u} | B_{2g} | B_{3g} | A_g | B_{1g} | | $B_{2g}\otimes\Gamma_i$ | B_{2g} | B_{3g} | A_g | B_{1g} | B_{2u} | B_{3u} | A_u | B_{1u} | | $B_{3u}\otimes\Gamma_i$ | B_{3u} | B_{2u} | B_{1u} | A_u | B_{3g} | B_{2g} | B_{1g} | A_g | | $B_{3g}\otimes\Gamma_i$ | | | | | | | | | We also need to do the same for the group D_{4h} in order to study the optical transitions in the YBa₂Cu₃O₆ compound. Here, the electric dipole operator breaks up into the irreducible representations $A_{2u} \oplus E_u$. Therefore, the infrared active phonons have the symmetry A_{2u} or E_u . The allowed electric dipole transitions can be found from the following table. | $\Gamma_i(D_{2h})$ | A_{1g} | A_{2g} | B_{1g} | B_{2g} | E_g | A_{1u} | A_{2u} | B_{1u} | B_{2u} | E_u | |-------------------------|----------|----------|----------|----------|--|----------|----------|----------|----------|--| | $A_{2u}\otimes\Gamma_i$ | A_{2u} | A_{1u} | B_{2u} | B_{1u} | E_u | A_{2g} | A_{1g} | B_{2g} | B_{1g} | | | $E_u \otimes \Gamma_i$ | E_u | E_u | E_u | E_u | $A_{1u} \oplus A_{2u} \oplus B_{1u} \oplus B_{2v}$ | E_g | E_g | E_g | E_g | $A_{1g} \oplus A_{2g} \oplus B_{1g} \oplus B_{2g}$ | # Problem X40: See the review article by Koster in Solid State Physics, Ref. [25] in the script, particularly the sections starting on page 174 and 229. # Problem X41: See Koster.